13:13 uur 16-10-2019

Taulia lanceert de volgende generatie Cash forecasting tool op EuroFinance Copenhagen 2019

  • Taulia lanceert dit jaar op de EuroFinance Conferentie van Kopenhagen 2019 een AI-aangedreven cash forecasting-oplossing.
  • Aan de hand van de informatie in de inkooporder en de factuur geeft Taulia Cash Forecasting een gedetailleerd beeld van de toekomstige kasstromen.
  • De nieuwe oplossing automatiseert het verzamelen van gegevens in wereldwijd verspreide ERP-instanties, waardoor een vrijwel real-time overzicht ontstaat.

SAN FRANCISCO-(BUSINESS WIRE)- Toonaangevende leverancier van werkkapitaaloplossingen Taulia heeft de lancering aangekondigd van een nieuwe AI-aangedreven cash forecasting-oplossing die treasurers een grotere accuraatheid geeft in hun voorspellingen en de inspanning die nodig is voor deze uitdagende activiteit vermindert.

Treasurers noemen het voorspellen van cash als hun eerste prioriteit. Het voorspellen is echter een tijdrovend en arbeidsintensief proces en maar al te vaak slagen de resultaten er niet in om een accuraat voorspelling te doen van cashtekorten of -overschotten.

Taulia Launches Next Generation Cash Forecasting Tool at EuroFinance Copenhagen 2019

  • Taulia is launching an AI-powered cash forecasting solution at this year’s EuroFinance Copenhagen 2019 Conference.
  • Using information held within the purchase order and invoice, Taulia Cash Forecasting provides a detailed view into future cash flows.
  • The new solution automates data collection across globally-distributed ERP instances creating near real-time visibility.

SAN FRANCISCO–(BUSINESS WIRE)– Leading working capital solutions provider Taulia has announced the launch of a new AI-powered cash forecasting solution which gives Treasurers greater accuracy in their forecasts, as well as reducing the effort involved in this challenging activity.

Treasurers consistently cite cash forecasting as their number one priority. However, forecasting is a time-consuming and resource-intensive process and all too often the results fail to accurately forecast cash shortfalls or surpluses.

By drawing upon document level data combined with counterparty risk and network behavior data, Taulia Cash Forecasting takes a data-driven approach, which when coupled with Taulia’s machine learning engine, results in an accurate and reliable view of future cash flows. With near real-time visibility into their future flows, Treasurers can improve their yield on cash, more effectively manage foreign exchange risk and anticipate future financing needs.

“Taulia Cash Forecasting is an exciting step towards Taulia’s vision to creating The Working Capital Platform of the future,” said Brady Cale, Taulia’s Chief Technology Officer. “Integrating AI with document level data greatly improves the speed and accuracy of cash forecasting, meaning that treasurers can make faster, better-informed decisions about their cash.”

Note for editors: Taulia is a leading provider of working capital solutions headquartered in San Francisco, California. Through a unique combination of its AI-powered platform, people and process, Taulia helps companies access the value tied up in their supply chain by transitioning from inefficient and often manual working capital management practices into technology-led, working capital optimization strategies. Taulia’s vision is to create a world where every business thrives and by enabling buyers and suppliers to choose when to pay and get paid, it liberates cash across the supply chain. A network of 1.8 million businesses use Taulia’s technology and the company processes over $300 billion every year. Taulia is trusted by over 120 of the world’s largest companies with clients including Airbus, AstraZeneca, Nissan, Telstra, the UK Government’s Crown Commercial Services and Vodafone. Achieving revenues of $48.8 million in 2018, the company is featured in the 2019 Inc. 5000 list of the fastest-growing private companies in the U.S.

Contacts

Juhie Kapoor

juhie.kapoor@taulia.com
0207 380 4542

Check out our twitter: @NewsNovumpr